
1

ZØ: An Optimizing Distributing

Zero-Knowledge Compiler

Matt Fredrikson

University of Wisconsin

Ben Livshits

Microsoft Research

2 2

Automatic Optimization

Cost modeling enables huge
optimization opportunities

Distributed Environments

ZØ automatically places code
on different computational tiers

“Zero-Knowledge for the Masses”

Users write ZK code in C#, as
one part of a larger project

This talk: at a glance

3 3

This talk: at a glance

Personal Fitness Rewards Retail Loyalty Card

Human Subjects Studies
Collaborative Recommender

System
Collaborative NIDS

Crowd-sourced traffic maps

4 4

Crowd-sourced traffic maps

5 5

6

Location

data

Traffic

Information

6

Privacy concern:

server knows all my locations

Integrity concern:

users send false data

to protect their location

7

Location

data

Traffic

Information

7

Privacy concern:

server knows all my locations

Integrity concern:

users send false data

to protect their locationZero-knowledge proofs offer a solution to

this fundamental tension

8

Traffic

Information

“Opaque”

Location

data
Location

data

Aggregate

Traffic Data

8

+

zero-knowledge

proof

9 9

Partition roads

into segments

Use Shamir shares

on segment IDs

10

Initial Experiments

We implemented this core

functionality in zero-knowledge

ZQL
[Fournet et al.,

Usenix Security 2013]

Pinocchio
[Parno et al., Oakland 2013]

0

20

40

60

80

100

120

140

Client

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Client Time to Process a

GPS Reading

ZQL Pinocchio Hybrid

11

Why Such a Contrast?

These zero-knowledge “back-ends” have

significantly different execution models

Compiles C to a fixed

circuit representation

ZQL

Compiles specialized

language to F#, then CIL

11

Pinocchio

12

ZØ: An Optimizing Compiler for ZK

12

ZØ uses the best of both back-ends as appropriate for the

application at hand

Automatic Optimization Distributed Environments“Zero-Knowledge for the Masses”

13

ZØ: An Optimizing Compiler for ZK

Input Performance
Analysis

ZK Translation Tier Splitting

13

Users write code in C#

14

ZØ: An Optimizing Compiler for ZK

Input Performance
Analysis

ZK Translation Tier Splitting

14

Build detailed cost models that characterize how

expensive C# will be when translated to zero-knowledge

Cost Model

System

Timings

Program
Structure

15

ZØ: An Optimizing Compiler for ZK

Input Performance
Analysis

ZK Translation Tier Splitting

15

Use cost models to find optimal translation,

then convert to ZK-producing IL

.NET IL

Cost Models

Performance
Profile

Global
Optimization

16

ZØ: An Optimizing Compiler for ZK

Input Performance
Analysis

ZK Translation Tier Splitting

16

Use location annotations to split IL between tiers,

insert automatic data transfer and synchronization

Final Output

Pinocchio ZQL

T
ie

r

1

ZQL ZQL ZQL

T
ie

r

2

Compiled

IL

Location
Annotations

Automatic Marshaling

17

ZERO-KNOWLEDGE IN C#

17

18

Zero-Knowledge in C#

Programmers specify ZK regions

ZK operations given by LINQ

expressions

Specify ZK input sizes to help optimization

Location annotations drive tier-splitting

19

COST MODELING

19

20

Cost Models for Optimization

20

Cost Model

Size of Input

Micro-op
timings

C# Source

Runtime

size of input micro-op timings

F(inputListSize) = eqOp * inputListSize + addOp + 12*expOp + 3 * extendOp + 14*mltOp

Cost models characterize the ZK runtime of C# code

21

Building a Cost Model

Given a circuit, we can

determine evaluation

and proof generation

time

map, fold, find

expressions: we can

always bound the

number of ops in each

expression

21

ZQL Pinocchio

Symbolic evaluation

over polynomial domain

Static circuit evaluation

polynomials

22

TRANSLATION &

TIER SPLITTING

22

23

Translating C# to Zero-Knowledge

Cost Models

f(inputListSize) = eqOp * inputListSize + addOp + …

f(numPeers) = addOp * numPeers + multOp + …

f(numItems) = multOp * numItems + eqOp + …

Performance Profile

Tier Compute Cost Transfer Cost

Mobile 2 3

Server 0.5 1

… … …

Global Optimization

.NET IL

Pinocchio ZQL ZQL Pinocchio ZQL

24

Traffic

Information

Aggregate

Traffic Data

24

Insert code for marshaling

and synchronization

25

Translating C# To Zero-Knowledge

25

26

EVALUATION

26

27

Experiments
We ran each application in three

configurations

27

ZQL Pinocchio ZØ

Personal Fitness
Rewards

Retail Loyalty Card

Human Subjects
Studies

Collaborative
Recommender

Collaborative NIDS

Crowd-sourced traffic
maps

28

Experiments
We ran each application in three

configurations

28

ZQL Pinocchio Hybrid

29 29

Loyalty Application, Client’s Time to Process Transaction

ZØ

Expensive operation on

a hot path
More gradual

linear scaling

ZQL times out on longer

transactions

ZØ’s cost models identified expensive operation, used

correct back-end

30 30

NIDS Application, Server’s Throughput

ZØ

Pinocchio’s throughput is

much higher!

Client configuration

times out

Global optimization traded server performance on small

inputs for greater scalability on both tiers

31

Experiments
We ran each application in three

configurations

31

Scales up to 10x larger data

Up to 40x improvement in runtime

Up to 10-100x smaller than ZQL

Scaling

Performance

Proof Size

ZQL Pinocchio ZØ

32

Conclusions

Cost modeling enables
aggressive optimizations

High-level input language
brings ZK “to the masses”

Automatic tier splitting
simplifies distributed apps

Illustrated benefits with six
applications

33 33

34 34

This talk: at a glance

Personal Fitness Rewards Retail Loyalty Card

Human Subjects Studies
Collaborative Recommender

System
Collaborative NIDS

Personal Fitness Rewards Retail Loyalty Card

Human Subjects Studies
Collaborative Recommender

System
Collaborative NIDS

Crowd-sourced traffic mapsCrowd-sourced traffic maps

35

Thanks!

• ZØ is a new zero-knowledge compiler

– Detailed cost modeling enable aggressive

optimizations

– High-level language brings ZK “to the masses”

– Automatic tier splitting simplifies distributed

apps

• Illustrated benefits with six interesting apps

– ZØ’s optimizations make these feasible

35

Conclusions

36

Modern apps demand

personal data

Pressure to address privacy

concerns is widespread

36

Often the need for data is

legitimate

In many applications, this

creates a tension between

privacy and integrity

37

Zero-Knowledge: A Promising Solution

Privacy

Integrity

Lots of theory…

?

But very little practice…

37

Prove that a computation was performed

correctly without revealing inputs

38
• The map is broken into regions, and

the desired statistic is the number of
clients in each region at time t.

• At regular intervals, the server
requests density stats from the clients.

• On receiving a request, each client:
1. Takes a GPS reading

2. Computes its map region

3. Encodes its region as a vector, zero
everywhere but the column for its
region

4. Creates shares of its vector, sends them
to other clients

5. On receiving the other clients’ shares,
each client sums all received shares and
sends the result to the server

• On receiving the summed shares from
the clients, the server reconstructs the
sum to obtain the density map

38

39

Privacy Concern: Merchant tracks all of

my purchases

Integrity Concern: Customer might target

specific discounts by faking history

Our Solution: Implement “discounter” as

transducer over purchase history, only send

transducer output to merchant.

Customer Loyalty App
• Scan at checkout to receive discounts

• Discounts are based on customer’s

previous transactions

• Examples: Walgreens’ iPhone app,

Safeway “just for U”

39

167.53
187.89

375.29

8.72
30.38

0

50

100

150

200

250

300

350

400

Client Server

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Time to Apply Discount

ZQL Pinocchio Hybrid

Pinocchio Verifier

Crashed

40

Personal Fitness Rewards
• Reads workout data from personal

training device (FitBit, Garmin, …)

• Users receive points for each mile

walked, run, biked…

• Points can be applied to charities,

or redeemed for discounts and

rewards

Privacy Concern: Sending my location

data to a third party

Integrity Concern: Users lie about

their exercise to receive free goods

Our Solution: Compute distance from

GPS coordinates on the user’s

computer, send final result to third

party

40

36.92

387.29

562.71

15.92
39.15

0

100

200

300

400

500

600

Client Server

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Time to Redeem Workout

ZQL Pinocchio Hybrid

41

Cost Model Accuracy

41

0.1 seconds on average

(14%)

Different stages of a single ZK

computation

0.32 seconds on average

(9%)

42

ZQL

• Translated code mimics structure of original program, does
additional cryptographic work for each primitive operation

• Relies heavily on a few primitive operations: map, fold, find

• Lambdas allowed only in limited contexts

• Translated code is highly parallelizable, esp. for the prover

• Runtime available for WP 7 and 8

Target code is purely-functional, operates on F# lists

42

43

Pinocchio

• Input language is C with static loops,

constant dereferences, no recursion

• Everything is in-lined

• Values are broken into constituent

bits, Boolean operations used

• Circuit evaluator/prover is optimized

native code

• Requires polynomial interpolation

and division

• No support for parallel execution

43

Target code is a fixed-length arithmetic circuit

44

Goals for ZØ

Performance

• Neither back-end is one-

size-fits-all

• Understanding

performance requires

specialized knowledge

• Bring zero-knowledge to

“the masses”

Usability

• Users should never write

their own crypto

• Seamless integration

with existing code

– LINQ is our bridge to

zero-knowledge

– Can integrate ZK with

large amounts of UI,

Libraries, arbitrary logic

• Automates tier-splitting

44

45

ZØ: An Optimizing Compiler for ZK

Input

C# Source

Performance
Analysis

Cost
Polynomial

ZK Translation

• Arithmetic
Circuit

• .NET IL

Tier Splitting

• Client IL

• Server IL

• Resource IL

Implemented in C# and F#

• 9995 LoC

• Uses CCI for processing and analysis, operates on IL

• Uses Solver Foundation to resolve constraints

Still a work in progress

• Integrate cost model generator

• Tune cost model primitive coefficients

45

46

total 203

input 0 # input

input 1 # input

input 2 # input

input 3 # input

input 4 # input

input 5 # input

input 6 # input

input 7 # input

input 8 # input

Translation in Action

ZQL Pinocchio

1 Multiplication

100 Additions

101 I/O Wires

46

47

Performance Comparison

Tables

Requires fixed input
size

All operations
execute over every
element

Uses functional lists

Find operations
complete when
predicate matched

Comparisons

Built-in support for
“standard” ops

Supports conditional
expressions

Built-in support for
equality*

Other comparisons
must be implemented
in query

Arithmetic

Fixed-width
operations

Infinite-precision

Multiplication
increases data size

Pinocchio

ZQL

47

Good for

“Big Data”

Good for

complex

comparisonsGood for

fixed

arithmetic

48

ZQL Performance

eqOp*regionListSize + addOP + 12*expOp + 3 * extendOp + 14*mltOp + …

Cryptographic

Overhead

Terms represent

input size
Tracks iterations

of current

expression
Execute nested

operationAccumulate cost

of nested op.

48

Symbolically execute code generated by ZQL compiler

49

Pinocchio Performance

Multiplication Gates d

Input Wires N

Proof Gen & Computation (7(d + N) – 2N + d)ExpMulB + … + O(d log2 d)(mul + add)

Verification N(mul + add) + 7Pair

Interpolation

Cost

O(6002 log2 6002)(add+mul) + 6507 ExpT + 44034 ExpB + 50541 ExpMulB + …

Source: Bryan Parno

49

Static polynomial based on circuit characteristics

50

Compiling to Zero-Knowledge

Core LINQ

expressionsCombinations of

list-structured data

50

51

LINQ -> Pinocchio

1. Infer input sizes and list bounds

Linear ProgramSize attributes

2. Create and assign types to expressions

3. Encapsulate each sub-expression in a distinct function

bounds → Tuple5

regions → Tuple5100

51

52

LINQ -> ZQL

1. Mostly straightforward translation from LINQ to F#

2. Generate output check

Descend on the structure of the output type, apply map and check

Caveat: ZQL queries cannot

output structured data

Pass result of LINQ operation

to ZQL query

Fail proof checking when false

squared.Select

sqrtTable.First

52

53 53

< Demo >

54 54

Back to our example…

Look up region in a large table of coordinatesZ

Show that GPS coordinates match resultP

Encode region as a vectorP

Creates shares of vectorZP

Sums other clients’ sharesZP

55

Distributing Across Tiers

Minimize the role of the compiler:

1. Infer dependencies between tiers

2. Insert calls to runtime API whenever cross-tier

dependencies exist
Functions called from main

always return Enumerable

Only the main function can

call code on multiple tiers

Each element inherits from

“relocatable” type

55

Core Principle: Rely on runtime whenever possible

56

ZØ: An Optimizing Compiler for ZK

Input

C# Source

Performance
Analysis

Cost Model

ZK Translation

• Arithmetic
Circuit

• .NET IL

Tier Splitting

• Client IL

• Server IL

• Resource IL

56

ZØ uses the best of both back-ends as appropriate for the

application at hand

57

Translating C# To Zero-Knowledge

57

Programmers specify ZK regions

ZK operations given by LINQ

expressions

Specify ZK input sizes to help optimization

